MACHINE LEARNING TO RATE ATAXIC BREATHING SEVERITY

DIAGNOSTICS
Algorithm that monitors for ataxic breathing events to determine risk of opioid-induced respiratory depression.

TECHNOLOGY TYPE
Software

STAGE OF DEVELOPMENT
- Verified the algorithm to monitor the severity of ataxic breathing when compared to manual analysis.
- Working towards applying the algorithm to a dataset of hospitalized patients taking opioids.

IP PROTECTION
Provisional patent filed.

LEARN MORE
Reference Number: U-6676

Aaron Duffy
Technology Manager
aaron.duffy@tvc.utah.edu
801-585-1377

TECHNOLOGY SUMMARY
Opioid-induced respiratory depression is traditionally recognized by assessment of respiratory rate, arterial oxygen saturation, end-tidal CO₂, and mental status. Although an irregular or ataxic breathing pattern is widely recognized as a manifestation of opioid effects, the presence of ataxic breathing is not routinely monitored or scored. A major obstacle to widespread monitoring for ataxic breathing is the necessity for manual, offline analysis.

University of Utah researchers have developed a machine learning algorithm that enables real-time, quantitative monitoring of patients' breathing patterns. This algorithm determines the severity of ataxic breathing events and has been verified to classify those events in a manner consistent with manual analysis. Accordingly, the algorithm should enable detection of opioid-induced respiratory depression events and determine their severity.

FEATURES AND BENEFITS
- Could obviate the need for manual monitoring for ataxic breathing.
- Could enable real-time detection of opioid-induced respiratory depression.

RECENT PUBLICATIONS

INVENTOR PROFILE
Lara B. Cates, Ph.D., Research Assistant Professor - Anesthesiology
Robert J. Farney, F.A.C.C.P., M.D., Professor (Clinical) – Internal Medicine

DATE UPDATED: 7/23/2019