Accurate anesthetic deployment is essential to successful surgical outcomes. Accordingly, current technology assesses the level of volatile anesthetic entering a patient through side stream infrared analysis. Yet, this highly accurate method of anesthetic sensing is cost prohibitive for low-income and resource-limited regions.

A novel low cost anesthetic volatiles sensor has been developed for use in resource-limited settings. The sensor includes tachometer and flow sensor readings typical in breathing circuits. The tachometer measures the revolutions per minute of the breathing circuit, while the flow sensor detects gas flow. The distinct readings between the two sensors indicate the proper anesthetic agent concentration and facilitate consistent anesthetic agent level monitoring.

Accurate anesthetic deployment is essential to successful surgical outcomes. Accordingly, current technology assesses the level of volatile anesthetic entering a patient through side stream infrared analysis. Yet, this highly accurate method of anesthetic sensing is cost prohibitive for low-income and resource-limited regions.

A novel low cost anesthetic volatiles sensor has been developed for use in resource-limited settings. The sensor includes tachometer and flow sensor readings typical in breathing circuits. The tachometer measures the revolutions per minute of the breathing circuit, while the flow sensor detects gas flow. The distinct readings between the two sensors indicate the proper anesthetic agent concentration and facilitate consistent anesthetic agent level monitoring.

- Replaces expensive side stream infrared analysis.
- Detects concentration of anesthetic agent in the breathing circuit.
- Offers reduced size and improved ease of use.

Kai Kuck, Ph.D., Professor - Anesthesiology
Joseph A. Orr, Ph.D., Research Professor - Anesthesiology