Gamma radiation is widely used in nuclear relevant security, medical radiological therapy, and scientific research. When administered in high doses, however, it increases cancer risk and causes tissue damage. Additionally, greater awareness of the threat of nuclear and radiological terrorism increases the need for instant detection of gamma radiation. Scientists and engineers have developed radiation detectors to measure the radiation dose. The accuracy of these devices is, unfortunately, limited by low sensitivity as well as energy and angular dependence.

The described optical sensor provides a cost-effective, easy-to-operate, and highly-sensitive gamma radiation detector. The sensor uses a novel molecule that emits blue fluorescence, which dissolves in halogenated solvents. The molecule experiences a reduction in emittance after contact with gamma rays. The acid interaction enables instant detection of gamma radiation down to the .01 Gy level.

FEATURES AND BENEFITS
- Increases sensitivity by three orders of magnitude compared to current state-of-the-art (.01 Gy compared to 10 Gy).
- Enables rapid, cost-effective sensing.
- Demonstrates potential for use in military and homeland security, medical treatment, and research.

RECENT PUBLICATIONS
Han, J., Salter, B.J., Zang, L. et. al. (2014). Low dose detection of gamma radiation via solvent assisted fluorescence quenching. *Journal of the American Chemical Society*. 136(13): 5090-5096. doi: [10.1021/ja500262n](https://doi.org/10.1021/ja500262n)

INVENTOR PROFILE
Ling Zang, Ph.D., [Professor – Materials Science & Engineering](https://example.com)