Over 70 percent of breast cancer patients develop bone metastasis, which causes severe pain, nerve compression, hypercalcemia, and debilitating bone fractures. Development and growth of bone metastases depend on the interactions between cells in the bone-tumor microenvironment that increase survival and proliferation of tumor cells. Current treatment options for osteolytic bone metastasis are limited to bisphosphonates and expensive RANKL-blocking antibody therapy with many adverse side effects.

A new, cost-effective treatment method utilizes a novel mechanism of action involving a RON kinase that activates macrophage-stimulating protein (MSP) which is a key driver of osteoclast activation in vivo. The pathway is independent of RANKL signaling. Inhibiting RON prevents both the development of osteolysis and the progression of existing osteolysis. Inhibiting this method also shows potential for treating bone loss due to osteoporosis.

TECHNOLOGY SUMMARY

- Reduces cost and side effects of osteolytic bone metastasis and osteoporosis treatment.
- Prevents development and progression of osteolysis.
- Enables a novel mechanism for treating bone loss, independent of the RANKL-RANK pathway.
- Demonstrates potential as a combination therapy.

FEATURES AND BENEFITS

- Reduces cost and side effects of osteolytic bone metastasis and osteoporosis treatment.
- Prevents development and progression of osteolysis.
- Enables a novel mechanism for treating bone loss, independent of the RANKL-RANK pathway.
- Demonstrates potential as a combination therapy.

IP PROTECTION

- Nationalized PCT Issued in the United States
 - Ron Inhibitors for Use in Preventing and Treating Bone Loss
 - US9907791B2

LEARN MORE

- Reference Number: U-5628
- Roberta Hunt
 - Technology Manager
 - roberta.hunt@tvc.utah.edu
 - 801-587-0519

RECENT PUBLICATIONS

doi: [10.1126/scitranslmed.aai9338](https://doi.org/10.1126/scitranslmed.aai9338)

INVENTOR PROFILE

Alana Welm, Ph.D., Associate Professor - Oncological Sciences
Kelsi Andrade, Ph.D., Graduate Research Assistant – Welm Lab