Atrial Fibrillation (AFib), the most common cardiac arrhythmia, causes serious tissue damage to the heart and increases the risk of stroke and heart failure. Existing ablation techniques only prove successful approximately 50 percent of the time because it is difficult to distinguish between diseased and healthy heart tissue.

A novel device improves ablation success by combining imaging, electrical mapping, and navigation. The device differentiates between healthy and diseased tissue with microstructural detail. The catheter and accompanying software also enables electrical mapping of the tissues functionality. This allows clinicians to visualize information of tissue microstructure with functional data, providing an individualized atlas of regional structure and function that guides diagnosis and treatment. The device is deployed using a steerable sheath and integrates with existing ablation technology.

Features and Benefits
- Enables real-time visualization of tissue function and state in AFib patients.
- Increases sensitivity and specificity when distinguishing between healthy and damaged cardiac tissue.
- Improves ablation success by providing individualized mapping of cardiac tissue.

Recent Publications

Inventor Profile
Frank Sachse, Ph.D., Associate Professor - Bioengineering
Robert Hitchcock, Ph.D., Graduate Chair & Associate Professor - Bioengineering

CARDIAC TISSUE IMAGING CATHETER

Medical Device
Imaging catheter that integrates existing steering, electrical mapping, and ablation technology to facilitate diagnosis and treatment of cardiac disease.

Technology Summary
Atrial Fibrillation (AFib), the most common cardiac arrhythmia, causes serious tissue damage to the heart and increases the risk of stroke and heart failure. Existing ablation techniques only prove successful approximately 50 percent of the time because it is difficult to distinguish between diseased and healthy heart tissue.

A novel device improves ablation success by combining imaging, electrical mapping, and navigation. The device differentiates between healthy and diseased tissue with microstructural detail. The catheter and accompanying software also enables electrical mapping of the tissues functionality. This allows clinicians to visualize information of tissue microstructure with functional data, providing an individualized atlas of regional structure and function that guides diagnosis and treatment. The device is deployed using a steerable sheath and integrates with existing ablation technology.

Features and Benefits
- Enables real-time visualization of tissue function and state in AFib patients.
- Increases sensitivity and specificity when distinguishing between healthy and damaged cardiac tissue.
- Improves ablation success by providing individualized mapping of cardiac tissue.

Recent Publications

Inventor Profile
Frank Sachse, Ph.D., Associate Professor - Bioengineering
Robert Hitchcock, Ph.D., Graduate Chair & Associate Professor - Bioengineering

Technology & Venture Commercialization | University of Utah | tvc.utah.edu
615 Arapeen Drive | Suite 310 | Salt Lake City, Utah 84108