ENDOMETRIAL CANCER (EC) is the most common gynecological malignancy in the United States, with over 49,000 new cases each year. Current animal tumors have insufficient structural architecture, and tumor heterogeneity and lack of effective drugs hinders treatment of EC. This complicates tests performed to predict patient response to certain treatments.

A novel model for the development of highly personalized gynecological tumors has been created. Orthotopic implantation of tumors derived from patients with gynecological malignancies result in mouse models that simulate human oncogenesis over multiple generations. The model is also excellent for translational studies.

Features and Benefits

- Offers a customizable mouse tumor model that simulates patient tumor and microenvironment.
- Provides stable propagation in mice over multiple generations.
- Improves predictability of tumor progression and drug response.
- Shows potential to customize therapeutic treatments for individual patients.

Recent Publications


Inventor Profile

Margit-Maria Janat-Amsbury, M.D., Ph.D., Adjunct Assistant Professor – Biomedical Engineering
C. Matthew Peterson, M.D., Professor and Chair – Obstetrics & Gynecology