Type 1 diabetes (T1D) is a chronic autoimmune disorder in which the host’s immune system is directed towards antigens associated with insulin generating pancreatic β-cells. Life-long insulin therapy alleviates symptoms of T1D, but treatment complications and affiliated conditions, such as cardiovascular disease, continue to affect patients’ health.

Guided by extensive target discovery and GWAS studies, along with a mouse model, a proprietary OCA-B peptide inhibitor has been developed as a treatment for T1D and multiple sclerosis. This approach reduces infiltrating T-cell numbers and alleviates T1D-associated elevated glucose levels without impairing T cell development, base-line function or T-cell memory function.

TECHNOLOGY SUMMARY

Type 1 diabetes (T1D) is a chronic autoimmune disorder in which the host’s immune system is directed towards antigens associated with insulin generating pancreatic β-cells. Life-long insulin therapy alleviates symptoms of T1D, but treatment complications and affiliated conditions, such as cardiovascular disease, continue to affect patients’ health.

Guided by extensive target discovery and GWAS studies, along with a mouse model, a proprietary OCA-B peptide inhibitor has been developed as a treatment for T1D and multiple sclerosis. This approach reduces infiltrating T-cell numbers and alleviates T1D-associated elevated glucose levels without impairing T cell development, base-line function or T-cell memory function.

FEATURES AND BENEFITS

- Provides cell-permeable peptide inhibitor for T1D treatment.
- Decreases reliance on external insulin therapy with preservation of pancreatic β-cells.
- Reduces side effects by lowering pathogenic T-cell function in T1D.

RECENT PUBLICATIONS

INVENTOR PROFILE

Dean Tantin, Ph.D., Assistant and Associate Professor - Pathology

DATE UPDATED: 7/16/2019