3D FIBER OPTIC INTERFEROMETER

INSTRUMENTATION
Portable coordinate measuring device that provides simple dimensional measurement of 3D machined parts with one micrometer accuracy, generating in-process control data for high precision machine shops.

TECHNOLOGY TYPE
- Metrology
- Interferometry
- Machine Shops
- Coordinate Measuring Machines

STAGE OF DEVELOPMENT
- Proof of concept demonstrated.
- Funded prototype in development.

IP PROTECTION
- Nationalized PCT Pending in the United States, Mexico, Japan, and Europe
- Interferometry System and Associated Methods WO2016100986A1
- Additional Patent Pending

INVENTOR PROFILE
Clayton C. Williams, Ph.D., Professor – Physics and Astronomy

TECHNOLOGY SUMMARY
Interferometry is a measurement technique that involves the superimposition of light waves, providing distance measurements with great accuracy. Highly accurate 3D measurements can only be made at the expense of time.

The 3D fiber optic interferometer directly measures three-dimensional distance and position with high speed and precision. The device uses light from single mode optical fibers to determine the distance between points in space. It does not require careful alignment of the fibers and can provide determination of absolute position. This device could be utilized in a number of manufacturing and robotic applications since it overcomes many of the difficulties associated with the distance between two articulating points. The device is accurate over one meter distances and would be most useful in machine shops employing large batch statistical process control manufacturing.

FEATURES AND BENEFITS
- Increases accuracy of three dimensional positioning measurements to within one micrometer.
- Reduces need for alignment.
- Provides high performance at a low cost.

LEARN MORE
Reference Numbers: U-5648, U-6192, U-6258

Nick Wilkes
Technology Manager
nick.wilkes@tvc.utah.edu
801-587-0515