PEPTIDES FOR CLEARING DEGRADED AND UNFOLDED COLLAGEN

THERAPEUTICS/RESEARCH TOOL

Peptide conjugates for imaging, diagnosis, and drug delivery for diseases and injuries that cause collagen damage.

TECHNOLOGY TYPE

Peptide
Tissue and Wound Repair
Small Molecule
Nanoparticles
Collagen
Digital Imaging
Tissue Microarrays

STAGE OF DEVELOPMENT

- Peptides have been synthesized.
- Further testing required to optimize composition and demonstrate efficacy.

IP PROTECTION

U.S. Utility Patent Pending
Modified Collagen Hybridizing Peptides and Uses Thereof
US20170112940A1

LEARN MORE

Reference Number: U-6042
Aaron Duffy
Technology Manager
aaron.duffy@tvcc.utah.edu
801-585-1377

TECHNOLOGY SUMMARY

Collagen is a major structure protein found in almost all human tissue. Degraded collagen is present in damaged tissues and is highly associated with many critical human diseases and injuries.

The collagen hybridizing peptide (CHP) can bind to these degraded collagens without affecting intact collagen. The proposed CHP has a high affinity to denatured collagen molecules for use in imaging, diagnosing, and treating diseases and injuries that cause collagen damage. The presence of Aza-Glycine residues from collagen mimetic peptide sequence increases stability of bonding to degraded collagen. The peptide can be paired with existing diagnostics and therapeutic agents to provide highly specific and targeted delivery of therapeutics or imaging markers to damaged collagen. Potential applications range from treating cancer to stabilizing blood clots and treating skin conditions.

FEATURES AND BENEFITS

• Improves target efficacy.
• Provides superior delivery of linked drugs to degraded collagen due to higher specificity.
• Increases imaging accuracy leading to better understanding of disease progression.

RECENT PUBLICATIONS


For a complete list of publications, visit 3Helix.com.

INVENTOR PROFILE

Yang Li, Ph.D., Research Assistant Professor – Biomedical Engineering
S. Michael Yu, Ph.D., Associate Professor – Biomedical Engineering

DATE UPDATED: 7/18/2019