Acute Myeloid Leukemia (AML) is an aggressive cancer with a five-year survival rate under 50 percent. In fact, only about one-third of AML patients are considered healthy enough to safely undergo chemotherapy, which leaves many patients without treatment options.

The proposed technology combines known AML drugs with HPMA polymers to prolong the active half-life of the drugs. This improves targeting of the tumor site and reduces off-target side effects. As each drug works through a different mechanism, the cancer cells are eliminated more completely, meaning lower doses of the drug may be used. This therapy provides treatment options for patients too sick to undergo chemotherapy or who prove non-responsive to existing, first-line treatments.

FEATURES AND BENEFITS
- Improves AML treatment efficacy.
- Provides a second-line therapy for reoccurrence.
- Reduces side effects.
- Repurposes an existing drug for use in patients otherwise too sick for chemotherapy.

RECENT PUBLICATIONS

INVENTOR PROFILE
Jindrich Henry Kopecek, Ph.D., D.Sc., Distinguish Professor – Pharmaceutical Chemistry and Biomedical Engineering
Jiyuan Yang, Ph.D., Research Professor - Pharmaceutical Chemistry
Paul Shami, M.D., Professor – Internal Medicine
Rui Zhang, Ph.D., Contractor Associate Scientist