TECHNOLOGY TYPE
- Devices
- Energy Harvesting
- Wearables
- Power Generation

STAGE OF DEVELOPMENT
- Proof of concept demonstrated through simulations.
- Early stage prototype developed.

IP PROTECTION
- Provisional Patent Filed

FUNDING TO DATE
- Active and on-going industry sponsored funding.

LEARN MORE
- Reference Number: U-6123

FEATURES AND BENEFITS
- Increases power generation for wearables.
- Eliminates the need for batteries.
- Holds potential to increase applications for self-powered wearables.

TECHNOLOGY SUMMARY
Self-powered wearables, such as watches, have existed for approximately 30 years. These wearables generate power using an eccentric rotor that rotates with movement. Certain types of motion facilitate energy generation better than others, however, with the motion from walking while being worn on the upper arm, torso, or waist, results in relatively low rates. A new eccentric rotor architecture design that includes a well-tuned rotational spring, improves the amount of power generated while walking by up to 300 percent when a device is worn on the wrist. Electricity is gained by magnetically plucked piezoelectric beams rather than gear train electromagnetic generators and can apply to any low mechanical loss electromechanical transducer.

RECENT PUBLICATIONS

INVENTOR PROFILE
Shad Roundy, Ph.D., [Assistant Professor - Mechanical Engineering](mailto:shard.Roundy@tvc.utah.edu)
Tiancheng Xue, [Graduate Research Assistant](mailto:tianchong.xue@tvc.utah.edu)
Robert Rantz, [Graduate Research Assistant](mailto:robert.rantz@tvc.utah.edu)

Nick Wilkes
Technology Manager
nick.wilkes@tvc.utah.edu
801-587-0515