PEPTIDES FOR CLEARING DEGRADED AND UNFOLDED COLLAGEN
THERAPEUTICS/RESEARCH TOOL
Peptide conjugates for imaging, diagnosis, and drug delivery for diseases and injuries that cause collagen damage.

TECHNOLOGY SUMMARY
Collagen is a major structure protein found in almost all human tissue. Degraded collagen is present in damaged tissues and is highly associated with many critical human diseases and injuries. The collagen hybridizing peptide (CHP) can bind to these degraded collagens without affecting intact collagen. The proposed CHP has a high affinity to denatured collagen molecules for use in imaging, diagnosing, and treating diseases and injuries that cause collagen damage. The presence of Aza-Glycine residues from collagen mimetic peptide sequence increases stability of bonding to degraded collagen. The peptide can be paired with existing diagnostics and therapeutic agents to provide highly specific and targeted delivery of therapeutics or imaging markers to damaged collagen. Potential applications range from treating cancer to stabilizing blood clots and treating skin conditions.

FEATURES AND BENEFITS
• Improves target efficacy.
• Provides superior delivery of linked drugs to degraded collagen due to higher specificity.
• Increases imaging accuracy leading to better understanding of disease progression.

RECENT PUBLICATIONS
comms14913.
For a complete list of publications, visit 3Helix.com.

INVENTOR PROFILE
Yang Li, Ph.D., Research Assistant Professor - Bioengineering
Hendra Wahyudi, Ph.D., Research Associate - Bioengineering
S. Michael Yu, Ph.D., Associate Professor - Bioengineering